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ABSTRACT

The net-centric ISR/ISTAR networks are expected to play a crucial role in the success of critical tasks such as
base perimeter protection, border patrol and so on. To accomplish these tasks in an effective and expedient
manner, it is important that these networks have the embedded capabilities to discover, delegate, and gather
relevant information in a timely and robust manner. In this paper, we present a system architecture and an
implementation that combines a service based reasoning mechanism with a sensor middleware infrastructure so
that tasks can be executed efficiently and effectively. A knowledge base, utilising the Semantic Web technologies,
provides the foundation for reasoning mechanism that assists users to discover, identify and allocate resources
that are made available through the middleware, in order to satisfy the needs of tasks. Once resources are
allocated to any given task, they can be accessed, controlled, shared, and their data feeds consumed through the
Fabric middleware. We use the semantic descriptions from the knowledge base to annotate the resources (types,
capabilities, etc.) in the sensor middleware so that they can be retrieved for reasoning during the discovery and
identification phases. The reasoner is implemented as a HTTP web service, with the following characteristics:

1. Computational intensive operations are off-loaded to dedicated nodes, preserving the resources in the
ISR/ISTAR networks.

2. HTTP services are accessible through a standard set of APIs irrespective of the reasoner technology used.

3. Support for seamless integration of different reasoners into the system.

Keywords: Knowledge Technologies, Semantic Web, Web Services, Reasoning as Services

1. INTRODUCTION

The net-centric ISR/ISTAR networks∗ are expected to play a crucial role in the success of critical tasks such
as base perimeter protection, border patrol and so on.1 This involves assigning appropriate sensing resources
to tasks such that assigned resources cover the information needs of the individual tasks. However, effective
and efficient assignment of sensing resources to such tasks is a computationally hard problem to solve.2 This is
because only a subset of available sensing resources are suitable to satisfy tasks due to the varying capabilities of
sensing resources and requirements of tasks. The difficulty of this problem is amplified in ISR/ISTAR domain,
and especially in a coalition context as highlighted in the example below.

Example 1. Consider a hypothetical country in which a civil war has been progressing for decades. Recently, a
United Nations backed international peace keeping force is deployed to keep the peace between the authorities in
place and militia. The peace keeping force backs the democratically elected current government but due to policy
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differences, only a limited set of its resources and information are shared with the authorities. For example, the
peace keeping force only provides low-resolution imagery over land to the authorities; this is mainly due to the
fact that according to the policies of the countries involved in the peace keeping force, disclosure of high resolution
imagery is classified. Therefore, while sharing resources with authorities, the peace keeping force has to respect
these policies. Recently a major earthquake has struck the region and humanitarian organisations want to access
the region to evacuate people and help the wounded. However, the humanitarian organisations lack means to
detect people and transport people to a safe location. The humanitarian organisations want to collaborate with
the peace keeping forces to acquire the vehicles but are not willing to use any vehicles with firepower in order to
keep its neutral status within the region. Most of the vehicles owned by the peace keeping force are therefore not
suitable for the task (i.e., they have got built in fire power capability) and only two helicopters and few trucks
are available. The peace keeping force has prior knowledge of a landslide near the region where humanitarian
organisations want access to; thus it recommends the use of helicopters to the humanitarian organisations. In
order to keep a safe corridor for the humanitarian organisations, the peace keeping force must deploy drones
with synthetic aperture radar cameras. This is because the drone can perform high altitude surveillance day and
night in any weather conditions without arousing any suspicion.

Considering the above example we can observe the following for such situations as depicted in the Figure 1.

• Multiple tasks compete for a available resources (e.g., detect enemy activity, hostage rescue, boarder
surveillance and so on).

• Environments in which these resources are deployed could rapidly change yielding new requirements (e.g.,
sand storms, thick cloud cover and so on).

• Demand placed on available ISR/ISTAR resources typically exceeds the inventory in coalition operations.3

• Coalition members may share resources to improve the total utility of achievable tasks but, there could
be policies governing the resources which restrict partners of the coalition deploying some resources or
accessing some particular information from resources.

Cloud 
Cover

Sand Storm 

Figure 1. Requirements for Resources-Task Assignment

Therefore, it is important to assign resources for tasks such that the assigned resources are cost-effective (i.e.,
with regard to their capabilities, performance, etc.) as well as necessary and sufficient to cater for the needs
of the tasks. Many communities have investigated different approaches to select resources for tasks and have
proposed mechanisms that could be applied to solve the resource selection problem. Some of these approaches



rely on having a “human in the loop” to decide which resources are appropriate to satisfy the requirements of
tasks4 whereas other approaches (especially from operations research) have tried to automate the assignment
process.2 It is very difficult for a human to have a bird’s-eye view of the available resources for tasks. This is
especially true in dynamic environments such as coalition operations. Therefore, having humans in the loop for
resource selection in such environments could have a negative effect on the performance of tasks with respect
to the duration of the solution discovery process. Operations research approaches tend to focus on the physical
aspects of the sensor network such as range, power, bandwidth and so on to optimally select resources for tasks.
Due to the lack of context-related information in such mechanisms, important domain specific information such
as capabilities required to satisfy the needs of tasks, weather conditions, terrain, policies governing the resources
and so on which make the assignment useful are ignored.

The International Technology Alliance in Network and Information Science (ITA)† project aims to create next
generation net-centric technologies for the US and UK armed forces such that they are given the information
advantage in challenging situations such as humanitarian relief, insurgent control, full combat operations and so
on. A section of the ITA project has been working on addressing the issues highlighted in the previous section.
Sensor Assignment to Missions‡ (SAM) is a knowledge-based framework developed under the ITA to introduce
context-related information into the solutions of the assignment problem. Another tool developed under ITA is
ITA Sensor Fabric§ (henceforth referred to as the ‘Fabric’) which allows users to discover, identify, access, control,
share, and consume sensing resources robustly. In this document we propose an architecture which integrate
these solutions to create a top-to-bottom system which assists users to intelligently specify their requirement, and
select and task resources effectively. However, running computationally expensive reasoning processes directly
within the sensor networks are not recommended nor practical. Therefore, the proposed architecture uses a
service-oriented approach to decouple the core reasoning techniques from the application layer so that light
versions of resource-task matching applications could be developed and execute with a remote set of reasoner
services with fabric providing up-to-date informational about resources in the field.

The rest of the document is organised as follows. In Section 2 we discuss in detail the technologies we have
used to derive our solution. Motivated by the limitations of the technologies described in Section 2, in Section 3
we introduce our integrated solution to address these concerns. We also present and discuss the architecture
for the remote reasoning and its functionalities in this section. Section 4 describes an application built using
the reasoning services introduced in Section 3 to implement a lightweight resource-task assignment algorithm.
We also discuss possible configurations in running this application based on user intentions. We conclude the
document in Section 5 with a discussion on the contributions of the proposed approach with respect to some
existing work and highlighting the future work.

2. RELATED TECHNOLOGIES

Considering the Example 1, it is apparent that in order to address the resource selection for tasks, an intelligent
(ideally, an autonomous mechanism) is needed. Such an approach should have the following characteristics:

• Effective knowledge representation (i.e., the language of choice should have efficient decision procedures to
compute the results in a timely manner as well as should be based on standards so that the knowledge
representation could be reused)

• Sufficient expressive power (i.e., ability to represent complex concepts, rules, and queries in a meaningful
way)

• Flexibility in the resource discovery process (i.e., ability to find different solutions for tasks with varying
needs and constraints)

• A mechanism to discover, identify, access, control, share, and consume sensing resources robustly.

Below we introduce some research works done under the ITA project to address these issues.

†http://wwww.usukita.org/
‡http://www.csd.abdn.ac.uk/research/ita/sam
§http://www.alphaworks.ibm.com/tech/fabric4sensors



2.1 A Knowledge-based Approach to Sensor-Task Assignment

SAM is a knowledge-based framework to compute resource types that are suitable to satisfy the needs of tasks.
The core of the framework is a set of interlinking ontologies and rules describing sensors, platforms, capabilities,
and constraints. The algorithms developed for SAM use this knowledge to infer a sound and complete set
of resource types (i.e., all appropriate resource types) for tasks based on the requirements of those tasks and
capabilities provided by the resources . The ontologies for the framework are developed using OWL-DL.5 An
important feature of Description Logic (DL)6 based languages is that their ability to define concepts in terms
of sufficient and necessary conditions. A new concept can be defined by specifying property restrictions and
relations on the existing concepts. For example, consider the concept of ‘Tactical Unmanned Aerial Vehicle’
(TUAV) defined with respect to the existing ontology concepts.

⇒ AerialVehicle ≡ Platform u ∃operatesIn.Air

⇒ UAV ≡ AerialVehicle u ∀hasNoCrew.Crew

⇒ TUAV ≡ UAV u ∃providesCapability.(Firepower t Surveillance)

The formalism also allows us to use off-the-self reasoners to infer new classifications based on existing def-
initions. This is very important since it allows us to use same definitions in different contexts. For example
consider the following definition of a sensing resource.

⇒ SensingResource ≡ ∃! hasPlatform.Platform u ∃hasSensor.Sensor

Using a reasoner we can show that any instance of the concept, sensing resource, be also classified as a platform
concept. Furthermore, it allows us to select resources based on different criteria. For example, one might be
interested in selecting resources based on the intelligence capabilities provided by the sensing resources while in
another case, they might be interested finding resources based on the hybrid capabilities such as NIIRS.7 Rules
attached with SAM framework allows us the capture crucial domain knowledge which otherwise be impossible
to represent. For example, to denote the sensing resources which can provide radar NIIRS 5 or above we use the
following SWRL8 rule.

⇒ needsCapability(?sr,?n) ← SensingResource(?sr) ∧ hasCapability(?sr,?n) ∧ RadarNIIRS5(?n)

As the result of the above rule, based on the knowledge we have, we can infer that the following resource set can
provide radar NIIRS 5 or above with respect to the ontology: {{GlobalHawk,SAR},{Predator,SAR},{Reaper,SAR}}.

We have defined a query language in de Mel et al.9 which can be used to represent a multitude of sensing
requirements and be executed efficiently and effectively through SAM. Consider the example 1 highlighted in
Section 1. Imagine a situation in which the local authorities need constant imagery intelligence (IMINT) from
the peacekeeping force. The request query would be as follows: IMINT ∧ConstantSurveillance. Upon receiving
the request, peacekeeping force sends data back to the authorities while respecting its policies. Remember, they
are not allowed to share high resolution imagery with other parties. This notion is captured by the following
rule; this again highlights the importance of having rules.

⇒ requestIntel(?c,?int) ← Not(CoalitionMember(?c)) ∧ IMINT(?int) ∧ hasQuality(?int,?q) ∧ Low(?q)

The new version of the SAM uses the Ontology Logic Programming (OLP)¶10 to implement the matching
algorithms. Developed under the ITA project, OLP allows us to present crucial domain knowledge using standard
Semantic Web technology languages and use logic-based programming to reason about this captured knowledge.
Current Semantic Web languages such as OWL5 and SWRL8 and the reasoners such as Pellet11 operates under
certain restrictions that make them impossible to be used in some cases. For example, due to the open-world
assumption in OWL-DL, it is impossible to implement negation by failure which is very important in matching
resources to tasks (e.g., find all sensing resources without any firepower capability). The importance of a
knowledge-based approach to resource-task assignment (and the accompanying SAM tool) is well published and
demonstrated in many internationally renowned conferences.9,12,13

¶http://sourceforge.net/projects/olp-api/



2.2 ITA Sensor Fabric

Fabric provides a middleware layer that encapsulates network and security management for resource-constrained
networks. The technology mitigates the complexity of managing message flows between coalition partners and
across disparate networks. The distributed stream-oriented SOA solutions provided by the fabric simplifies
the development and management of sensor network solutions. It addresses the challenges of sensing recourse
identification and discovery, access and control, classification and interoperability, information and data sharing,
dissemination and consummation, and policy-based interoperability and trust by providing unified access to, and
management of, sensor networks. It employs a security model based upon authorisation and obligation policy
enforcement leveraging the Policy Management Toolkit‖.

The Fabric spans the operational network from the command centre to the deployed resources (e.g., sensing
resources, services, personnel and so on). It tracks the sensors, nodes, services and the users of a network,
and facilitates universal access to resources from any point in the network while maximising its availability
and utility to applications, services and users. The Fabric is designed as an extensible platform with a plug-in
architecture that allows new functions including services, policies, security, filters, transformations, and event
detection algorithms to be deployed directly into the sensor network and selectively applied to the message
(information, data, control commands, etc.) flows between the resources and the users.

The Fabric implements a two-way messaging bus and a set of middleware services providing connectivity
between all of the networks resources to each other and to users. A typical Fabric node consists of three basic
elements: (1) an instance of a message broker∗∗, (2) an instance of the Fabric Manager and (3) instance of the
Fabric Registry. The Fabric Manager is the main service on any given node and leverages a publish/subscribe
messaging model with multi-hop capabilities, and ensures that messages propagate efficiently in the network,
without duplication, and with the optimal use of bandwidth. It manages all the communication channels between
nodes, the routing of messages between nodes, sensing resources and users, and the plug-in container; it also
tracks the status of all connected resources , services and users. Information about all nodes, the routes and
other ISR/ISTAR resources is recorded in the Fabric Registry. This database leverages the Dynamic Distributed
Federated Database14 and is distributed across each of the Fabric nodes, with each node responsible for managing
the information about itself, and the resources and users attached to it. The information recorded in the
Registry includes: resource types, physical locations, operational characteristics, neighbours, task commitments,
and current operational status/availability. As new resources are added to the Fabric, they are automatically
included in the Fabric Registry, making them available to all Fabric users (subject to applicable policies). The
Registry also tracks users, tasks, and Fabric extensions (pluggable Fabric functionality).

The technologies highlighted above help us to address two main issues identified for the resource-task assign-
ment problem in sensor networks: (1) effective resource selection for tasks (2) tasking of sensing resources and
retrieving sensor data robustly. However, one limitation of the current version of the SAM framework is that, it
assumes every resource known to it is available for the assignment (i.e., all resources described in the ontology
are already deployed). This is clearly not practical nor feasible; for example, consider a situation where SAM
has information about a ‘Global Hawk’ in its knowledge base, but there exists no ‘Global Hawks’ in the field. On
the other hand, fabric requires users to have prior knowledge about which sensing resources could satisfy their
needs. However, in an environment where available resources could rapidly change, it is not prudent to assume
that users would always know the best possible resources to use in their tasks. Motivated by these limitations,
in the next section, we propose a technology integration to capitalise on the strengths both technologies in order
to eliminate limitations of the other technology - i.e., SAM can bring context of operation into the fabric and
in turn fabric could provide SAM with a current snapshot of the sensing environment to make the selection
appropriate.

3. SAM - FABRIC INTEGRATION

The overview of the integration is depicted in Figure 2. In the figure, R1. . .R5 represents sensing resources,
and N1. . .N4 are fabric nodes. SAM is proposed to be deployed as an application platform in the fabric so that

‖http://www.alphaworks.ibm.com/tech/wpml
∗∗http://www.alphaworks.ibm.com/tech/rsmb



it would become an entry point to users to perform intelligent resource selection and tasking. This integration
would allow SAM to become more resource aware (i.e., fabric could provide an up-to-date snapshot of the field)
and fabric could compensate its lack of context related issues with the functionalities provided by the SAM.

N1	  

N2	  

N3	  

R1	  

R2	  

R3	  

R4	  

R5	  

ITA Sensor  
Fabric 

N4	  
Matchmaking	  
Applica6ons	  

(SAM)	  

Figure 2. SAM - Fabric Integration

However, as described in Subsection 2.1, SAM uses DL reasoning to compute the appropriate resources for
tasks. DL reasoning is a computationally intensive operation; running such expensive reasoning processes directly
within low powered sensor networks are not recommended nor practical. Motivated by this issue, we propose an
architecture and an implementation which expose the core reasoning capabilities of a reasoner as a set of services
in the next subsection.

3.1 Reasoning as Services

Exposing the core functionalities of a reasoner as services is an important problem to be solved for many domains.
This is due to a variety of reasons:

• Though knowledge-based reasoning has become very efficient with knowledge representation techniques
such as OWL-DL, it is still a very computationally intensive operation (CPU, memory, etc.). This makes
it impossible to create application which can utilise the power of reasoning in low powered devices such as
handhelds.

• There are many reasoners for the Semantic Web implemented in many different languages. For example
Pelletis implemented in java whereas Fact++ is implemented using C++. Thus, interacting with such
reasoners would require the use of specific languages (java,c++,python) or a great deal of integration
efforts (e.g., writing native code).

• Applications want to seamlessly integrate with different reasoners (i.e., reasoning mechanisms are loosely
coupled with the applications) based on their needs.

Influenced by the above requirements, we propose the architecture depicted in Figure 3 as means to expose
the core functionalities of an arbitrary reasoner as a set of services.

The reasoning as services (henceforth referred to as ‘RasS’) architecture has two main parts: Server side and
client side. They are both implemented as an application programming interface (API) so that they could be
easily integrated with other system and extended in an interoperable manner. At the RasS server end, each
knowledge base (i.e., RiKBj , i=1. . .N, j=1. . .M) attached with a particular reasoner engine (i.e., REi, i=1. . .N)
is exposed by a unique URI of the form ‘http://host:port/REi/RiKBj ’. Externally, all these knowledge bases are
accessed and manipulated through RasS Server Interface using RESTFul15 requests. We have used a RESTFul
approach in this framework due to a variety of reasons:
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Figure 3. RasS Architecture

• It is architecturally well understood; the whole web is based on it.

• Complements the latest and well researched knowledge representation techniques supported under Semantic
Web vision (i.e., each and every resource is uniquely identified by a URI).

• RESTFul services are lightweight and easy to use and implement compared to SOAP-based16 services.

Internally, these requests are processed by the appropriate Reasoner Engine API that implements the Rea-
soner Interface. This interface-based approach allows seamless integration of new reasoners the architecture;
this is because, one would only need to implement the interface to add a new reasoner at the back-end. At
the moment the reasoning service framework support two reasoners (Pellet11 and OLP10) through the uniform
interface. The Reasoner Engine API utilisers APIs such as OLP API,10 OWL API17 and so on to manipulate
the knowledge bases.

When the RasS server receives RESTFul requests, it maps each and every request to an appropriate reasoner
resource. The appropriate reasoner resource is picked based on the unique reasoner ID (i.e., REi, i=1. . .N)
and knowledge based ID (i.e., RiKBj , i=1. . .N, j=1. . .M) attached with the request. These reasoning resources
support all the core reasoning techniques (e.g., classification of concepts, consistency checking of a knowledge
base, subsumption between concepts, identifying specific instances of a concept, details description of an indi-
vidual, etc.,) supported by the exposed reasoner. Due to the uniform interface approach we have taken in this
architecture, it allows users to formulate similar requests to multiple knowledge bases by simply changing the ID
of the knowledge-base. This allows users to easily compare and contrast the results of different reasoners. Once
the request is executed, RasS server responses to the requestor with a packet that contains information such as
success or failure of the request, matching values to the requests, instantiated values for the query variables and
so on.

The RasS Client API helps users to formulate requests based on a set of APIs that are easy to use. All
the core reasoning techniques of a desired reasoner service could be accessed using a higher-level programming
language. Furthermore, we have made provision to users to create and modify knowledge bases using the same
API so that if the required knowledge base does not exists, users could create it easily.

The architecture proposed here does not allow modification of instances, concepts, or properties of existing
knowledge bases; it is targeted purely to be a knowledge inferring system (i.e., reasoning, querying, etc.). If
the knowledge needs changing, users need to update the knowledge externally, and refresh the appropriate
knowledge-bases identified by the reasoner resource ID. Though the knowledge management techniques could
easily be introduced into the architecture, authors believe that by doing so would unnecessarily increase the
complexity of the system. By targeting the architecture to be reasoning only, we could examine interesting
aspects of reasoning such as query answering, different reasoning paradigms, optimised searching of knowledge-
bases and so on. In the next subsection we discuss the functionalities of RasS with examples.



3.2 Functionality

RasS supports ontology-based reasoning, first-order-logic reasoning, and query answering in its current form.
Query answering is limited to SPARQL18 and first-order-logic queries. Below we discuss the core functionalities
of RasS with examples. In order to generate requests to the RasS server, we use cURL†† in this section.

Create and update knowledge bases: A RasS knowledge base can be created by import a number of ontolo-
gies or other knowledge bases (e.g., Prolog19 knolewdge bases) into a unique resource ID under a particular
reasoner. For example, the following cURL request creates a reasoner resource ‘host:port/REi/RiKBj ’
using the knowledge from files f1 . . . fo and reasoning engine REi.

curl -sv -X POST -HContent-type:application/xml --data "<reasoner><id>R iKB j</id><uri>f1,. . .,f o
</uri></reasoner>" host:port/RE i

One can update this reasoning resource by substituting the POST directive of the above cURL request
with PUT directive with appropriate references to the updated knowledge. The consistency checking of
knowledge bases are done while creating them. Therefore, in the case of an inconsistent knowledge, the
response to a request could end up being false.

Concept checking: The notions such as subclasses and superclasses of a concept, subsumption and equivalence
between concepts are performed easily. For example, in order to check whether an ISTAR ‘Global Hawk’
is included under the concept ‘High Altitude Long Endurance UAV’ (HALE), one could send a request to
the ISTAR knowledge base as follows.

curl -sv -X GET host:port/RE i/ISTAR/classes/HALE/subsumes/Global_Hawk

In order to check equivalence of the two concepts, one simply substitute the subsumes in the above request
with eqv.

Instance checking: The direct and indirect instances of concepts are easily discovered. For example, non-direct
individuals of the ISTAR concept UAV is discovered from the response to the request

curl -sv -X GET host:port/RE i/ISTAR/individuals/UAV/nondirect

Also, the properties of a particular individual could be found by sending request as follows; it request for
all the capabilities provided a particular ‘Global Hawk’ instance. This is very important in identifying
appropriate resources for a task.

curl -sv -X GET host:port/RE i/ISTAR/individuals/Global_Hawk_PI/property/providesCapability

Query answering: RasS in its current form supports SPARQL18 and OLP10 query formalisms. For example, an
ISTAR sensing resource that provides ‘High Altitude’ capability could be queried from an OLP knowledge
base using the following request with the query Q.

curl -sv -X POST -HContent-type:application/xml --data "<queries><query>Q</query></queries>"
host:port/olp/istar/query

Q = istar:’S_Resource’(X),istar:’providesCapability’(X,istar:’HighAltitudeCapability’).

In the next section we describe an application that uses these reasoning service, SAM matchmaking algorithm,
and fabric to perform resource-task assignment in an intelligent and resource aware manner.

††cURL is a suit of libraries and tools to transfer data using various protocols - http://curl.haxx.se/



Sensing Resource Platform Sensors Node Affiliation
SR1 Harrier GR9 EOCamera,IRCamera node1
SR2 Global Hawk EOCamera, IRCamera, SARCamera node2
SR3 Predator A LDRFCamera, SARCamera, TVCamera node3

Table 1. Sensing resources and their node affiliations

4. CASE-STUDY

In order to demonstrate the use of RasS in a real world situation, we have have created an application platform
on the fabric which helps users to perform intelligent recourse selection for their tasks. The whole system is
simulated in a MacBook with 1.8 GHz Intel Core 2 Duo processor and 2GB of RAM.

As shown in Figure 4, a US owned sensor network is deployed using the fabric. This particular instance
of the fabric manages three sensing resources which in turn report data to the fabric through relevant nodes.
The Table 1 shows the sensing recourses, the platforms and sensors attached with those sensing resources, and
the ID of the node to which the sensing resource reports. Platform and sensor descriptions in the fabric’s
tables are semantically annotated the using the ISTAR ontology∗. This enables us to retrieve sensing resources
information from the fabric and reason about them with an ISTAR reasoning resource, since each and every
resource is identified with an ISTAR concept. We have deployed a RasS server and registered that with the
fabric through node 4. We could deploy multiple instances of the RasS server with different capabilities and
utilise them in a multitude of applications. Discovery of these reasoner services is straight forward using the
fabric’s discovery capabilities.

Matchmaking	  
Applica/ons	  

RasS	  

Node	  4	  

Figure 4. Resource-Task Assignment Application based on RasS

A lightweight application has been created where users could specify their requirements adhering to the query
language defined in.9 We execute this application in two different settings.

Selection based on deployed resources: In this setting, matchmaking application first retrieved the de-
ployed sensing resources (i.e., SR1,SR2, and SR3) from the fabric. We have implemented a set of APIs to

∗http://www.csd.abdn.ac.uk/research/ita/sam/downloads/ontology/ISTAR.owl



Sensing Resource Platform Sensors
SR4 Nimrod MR2 LDRFCamera, SARCamera, TVCamera
SR5 WASP EOCamera
SR6 WASP IRCamera
SR7 Hunter IRCamera, EOCamera
SR5 Shadow 200 LDRFCamera, IRCamera, TVCamera

Table 2. Sensing resources available in the theatre

assists this process so that multitude of applications could easily access the fabric. The retrieved records
contain information such as unique IDs of the resources, their types, and references to the ISTAR ontology
concepts. The application then used these ontology references to check whether each and every resources
deployed in the fabric is capable of satisfying the user query. This was done by accessing an ISTAR reasoner
service and using subsumption and property checking capabilities of the service. The types of the resources
that satisfied the user query were recorded and proposed as solutions to the user. Below we provide two
example queries we ran.

Find available resources with firepower capability: The proposed solutions were SR1 and SR2. This
is because, both of them have built-in firepower whereas ‘Global Hawk’ has no firepower (i.e., consis-
tent with the ISTAR knowledge in the reasoner)

Find available resources with firepower and high altitude capability: The proposed solution was
SR1. This is because SR3 is a ‘Predator’ resource and only provides medium altitude capability.

Selection based on available resources: In this case, not all resources were deployed in the field, i.e., some
are in theatre. However, these resources are registered with the fabric. The Table 2 shows these resources.
These resources could play an important role while planning future missions. This is because, even though
these resources were not available be on the field, they are ready to be deployed. In this setting, match-
making application retrieved deployed resources as well as resources that were available in the theatre using
the same API mentioned above. Below we provide two example queries we ran and the solutions obtained.

Gather intelligence discreetly: This implied that we would need high altitude surveillance. For this
query, the matching application proposed SR1 and SR3 from the deployed set as well as SR4 from the
resources in the theatre. This is because according to the knowledge available to the ISTAR reasoner
service, a ‘Nimrod’ could perform high altitude surveillance.

Gather intelligence discreetly in cloudy conditions: The matching application only proposed SR3
and SR4. This is because only they provide the ‘synthetic aperture radar’ capability which is needed
for cloud penetration.

5. RELATED WORK & CONCLUSION

Web services help in creating interoperable systems and assist in code reuse. However, they are rarely described
formally, which hinders automatic discovery of services. In order to address this issue, semantic web services
are proposed.20 Semantic web services are web services that are annotated with semantic descriptions so that
services could be matched against requests, compose new services, and so on.21 There is also a sizeable amount
of literature on automating the service discovery based of the user quires (i.e., matching queries to services).22,23

Despite the ever-growing number of available reasoners for the Semantic Web, there is very little work done
to expose the core reasoning mechanisms (i.e., classification of concepts, subsumptions, etc) of these reasoners as
services. DIG specification24 is the first of its kind to examine the feasibility to opening knowledge management
and reasoning as remote services. However, this is now been deprecated, thus, does no support any new OWL
constructs or technologies (e..g, SPARQL,18 rules, etc.,). The successor to the DIG specification is OWLLink
protocol.25 Though this specification looks very promising, it is still very much at the specification stage and
does not support many technologies such as SWRL in its implementation. Also, it aims at providing a protocol



for OWL knowledge and reasoner management, thus the implementations could become complex and bulky to
execute. PelletServer26 is an alpha version of the popular OWL-DL reasoner Pellet as a RESTFul interface.
Even though it addresses most of the concerns identified for other remote reasoner services approaches, it lacks
in terms of the reasoner support. It only supports Pellet, thus, makes it impossible to tryout other reasoners
and techniques (i.e., closed world reasoning).

Currently we are working on automating the reasoner services to query matching based on many criteria:
capabilities of the services, ownership, policies governing the services, user intensions. We use abstract interpre-
tation techniques to capture user intentions.27 Further extension to the query-service matching could be done
by incorporating physical properties of the reasoner services and their environments such as CPU, Memory use
and so on but is out of the scope of this work. In this paper we have highlighted the need for a knowledge-based
approach for resource-task selection to make to assignment effective. We have also shown the importance of a
framework that supports discovery, identification, and tasking of sensing resources in a robust manner. In order
to increase the interoperability, reuse, and to reduce the strain of expensive reasoning processes, we have pro-
posed an architecture and an implementation that exposes the core reasoning techniques as RESTFul services.
An application is built based on the reasoner services framework and we have discussed with example results the
possible use-cases of this application.

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence and was accom-

plished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those

of the author(s) and should not be interpreted as representing the official policies, either expressed or implied, of the U.S.

Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and

U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any

copyright notation hereon.

REFERENCES

[1] Pearson, G., “A Vision of Network-Centric ISTAR and the Resulting Challenges,” in [Unattended Ground,
Sea, and Air Sensor Technologies and Applications X ], Carapezza, E. M., ed., 6963(1) (2008). Available
from: http://link.aip.org/link/?PSI/6963/696302/1.

[2] Johnson, M. P., Rowaihy, H., Pizzocaroz, D., Bar-Noy, A., Chalmers, S., Porta, T. L., and Preece, A.,
“Frugal Sensor Assignment,” in [4th IEEE International Conference on Distributed Computing in Sensor
Systems ], (June 2008).

[3] Joint Publication, “JP 2-01: Joint and National Intelligence Support to Mili-
tary Operations,” Intelligence, Series 2-0 Publications 2 (2004). Available from:
http://www.dtic.mil/doctrine/jpintelligenceseriespubs.htm.

[4] Botts, M., Percivall, G., Reed, C., and Davidson, J., “OGC Sensor Web Enablement: Overview And High
Level Architecture,” tech. rep., Open Geospatial Consortium Inc (December 2007).
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